## Assignment 2(SKEMA)

1. Show how the flag register is affected by the following instructions:

| (i) | MOVLW | B'00001111' | $\begin{aligned} & \mathrm{L}=00001111 \\ & \mathrm{~W}=\mathrm{L}=00001111 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  | ANDLW | B'10110000' | $\begin{aligned} & \begin{array}{l} \mathrm{L}=10110000 \\ \mathrm{~W} \text { AND } \mathrm{L}= \\ =00001111 \\ \underline{10110000} \\ 00000000 \end{array} \end{aligned}$ <br> Affected flag is Z, $\mathrm{Z}=1$, because result of the operation is ZERO |
| (ii) | MOVLW | B'00110001' | $\begin{aligned} & \mathrm{L}=00110001 \\ & \mathrm{~W}=\mathrm{L}=00110001 \end{aligned}$ |
|  | IORLW | B'11001110' | $\begin{aligned} & \mathrm{L}=11001110 \\ & \mathrm{~W} \text { IOR } \mathrm{L}=00110001 \\ & \underline{\underline{11001110}} 11111111 \end{aligned}$ <br> Affected flag is Z, $\mathrm{Z}=0$, because result of operation is NOT ZERO |
| (iii) | MOVLW | B'11111111' | $\begin{aligned} & \mathrm{L}=11111111 \\ & \mathrm{~W}=\mathrm{L}=11111111 \end{aligned}$ |
|  | ADDLW | B'00000001' | $\begin{aligned} & \mathrm{L}=00000001 \\ & \mathrm{~W}+\mathrm{L}=11111111 \\ & \underline{\underline{00000001}} \\ & {[1] 00000000} \end{aligned}$ <br> Affected flag are C, DC, Z <br> $\mathrm{Z}=1$, because result of the operation is ZERO $\mathrm{C}=1$, because there is a carry beyond the D7 bit $\mathrm{DC}=1$, because there is a carry from the D3 to the D4 bit |
| (iv) | MOVLW | B'11111000' | $\begin{aligned} & \mathrm{L}=11111000 \\ & \mathrm{~W}=\mathrm{L}=11111000 \end{aligned}$ |
|  | MOVWF | Mybyte | $\begin{aligned} & \mathrm{F}=\text { Mybyte } \\ & \text { Mybyte }=\mathrm{W}=11111000 \end{aligned}$ |
|  | MOVLW | B'10001001' | $\begin{aligned} & \mathrm{L}=10001001 \\ & \mathrm{~W}=\mathrm{L}=10001001 \\ & \hline \end{aligned}$ |
|  | ADDWF | Mybyte,0 | $\begin{aligned} & \text { F = Mybyte } \\ & \mathrm{W}+\mathrm{F} \text {, result of operation save in } \mathrm{W} \\ & \mathrm{~W}+\text { Mybyte }=10001001 \\ & \qquad \underline{11111000} \\ & \quad[1] 10000001 \\ & \text { Affected flag are C, DC, } \mathrm{Z} \\ & \mathrm{Z}=0 \text {, because result of the operation is NOT ZERO } \\ & \mathrm{C}=1 \text {, because there is a carry beyond the D7 bit } \\ & \text { DC=1,because there is a carry from the D3 to the D4 bit } \\ & \hline \end{aligned}$ |
| (v) | MOVLW | B'00001111' | $\begin{aligned} & \mathrm{L}=00001111 \\ & \mathrm{~W}=\mathrm{L}=00001111 \\ & \hline \end{aligned}$ |
|  | MOVWF | MyReg | $\begin{aligned} & \mathrm{F}=\text { MyReg } \\ & \text { MyReg }=\mathrm{W}=00001111 \end{aligned}$ |


| MOVLW | B'00001111' | $\begin{aligned} & \mathrm{L}=00001111 \\ & \mathrm{~W}=\mathrm{L}=00001111 \end{aligned}$ |
| :---: | :---: | :---: |
| SUBWF | MyReg, 0 | F = MyReg |
|  |  | W - F, result of operation save in W |
|  |  | $\text { W }- \text { MyReg }=00001111$ |
|  |  | [0] 000000000 |
|  |  | Affected flag are C, DC, Z |
|  |  | $\mathrm{Z}=1$, because result of the operation is ZERO |
|  |  | $\mathrm{C}=0$, because there is no carry beyond the D 7 bit |
|  |  | $\mathrm{DC}=0$, because there is no carry from the D 3 to the D 4 bit |

2. State the contents of the file register RAM locations after the following program:

| MOVLW | H'99' | $\begin{aligned} & \mathrm{L}=\mathrm{H}^{\prime} 99^{\prime} \\ & \mathrm{W}=\mathrm{L}=\mathrm{H}^{\prime} 99^{\prime} \end{aligned}$ |
| :---: | :---: | :---: |
| MOVWF | $\mathrm{H}^{\prime} 12{ }^{\prime}$ | $\begin{aligned} & \mathrm{F} \rightarrow \mathrm{H}^{\prime} 12^{\prime} \\ & \mathrm{F}=\mathrm{W}=\mathrm{H}^{\prime} 99^{\prime} \\ & \mathrm{H}^{\prime} 12^{\prime}=\mathrm{H}^{\prime} 99^{\prime} \end{aligned}$ |
| MOVLW | H'85' | $\begin{aligned} & \mathrm{L}=\mathrm{H}^{\prime} 85^{\prime} \\ & \mathrm{W}=\mathrm{L}=\mathrm{H}^{\prime} 85 \end{aligned}$ |
| MOVWF | H'13' | $\begin{aligned} & \hline \mathrm{F} \rightarrow \mathrm{H}^{\prime} 13^{\prime} \\ & \mathrm{F}=\mathrm{W}=\mathrm{H}^{\prime} 85^{\prime} \\ & \mathrm{H}^{\prime} 133^{\prime}=\mathrm{H}^{\prime} 85^{\prime} \end{aligned}$ |
| MOVLW | $\mathrm{H}^{\prime} 3 \mathrm{~F}$ ' | $\begin{aligned} & \mathrm{L}=\mathrm{H}^{\prime} 3 \mathrm{~F} \\ & \mathrm{~W}=\mathrm{L}=\mathrm{H}^{\prime} 3 \mathrm{~F} \end{aligned}$ |
| MOVWF | H'14' | $\begin{aligned} & \mathrm{F} \rightarrow \mathrm{H}^{\prime} 14^{\prime} \\ & \mathrm{F}=\mathrm{W}=\mathrm{H}^{\prime} 3 \mathrm{~F} \\ & \mathrm{H}^{\prime} 14^{\prime}=\mathrm{H}^{\prime} 3 \mathrm{~F}^{\prime} \end{aligned}$ |
| MOVLW | H'63' | $\begin{aligned} & \mathrm{L}=\mathrm{H}^{\prime} 63^{\prime} \\ & \mathrm{W}=\mathrm{L}=\mathrm{H}^{\prime} 63 \end{aligned}$ |
| MOVWF | $\mathrm{H}^{\prime} 15$ ' | $\begin{aligned} & \mathrm{F} \rightarrow \mathrm{H}^{\prime} 15^{\prime} \\ & \mathrm{F}=\mathrm{W}=\mathrm{H}^{\prime} 63^{\prime} \\ & \mathrm{H}^{\prime} 155^{\prime}=\mathrm{H}^{\prime} 63^{\prime} \end{aligned}$ |
| MOVLW | H'12' | $\begin{aligned} & \mathrm{L}=\mathrm{H}^{\prime} 12^{\prime} \\ & \mathrm{W}=\mathrm{L}=\mathrm{H}^{\prime} 12, \end{aligned}$ |
| MOVWF | H'16' | $\begin{aligned} & \mathrm{F} \rightarrow \mathrm{H}^{\prime} 16^{\prime} \\ & \mathrm{F}=\mathrm{W}=\mathrm{H}^{\prime} 12^{\prime} \\ & \mathrm{H}^{\prime} 16^{\prime}=\mathrm{H}^{\prime} 12^{\prime} \end{aligned}$ |

3. State the contents of RAM locations $0 \times 12$ and WREG after the following program:

| MOVLW | 0 | $\begin{aligned} & \mathrm{L}=0 \\ & \mathrm{~W}=\mathrm{L}=0 \end{aligned}$ |
| :---: | :---: | :---: |
| MOVWF | 0x12 | $\begin{aligned} & \mathrm{F} \rightarrow 0 \times 12 \\ & \mathrm{~F}=\mathrm{W}=0 \\ & 0 \times 12=0 \end{aligned}$ |
| MOVLW | 0x22 | $\begin{aligned} & \mathrm{L}=0 \times 22 \\ & \mathrm{~W}=\mathrm{L}=0 \times 22 \\ & \hline \end{aligned}$ |
| ADDWF | 0x12, F | $\begin{aligned} & \hline W+F \text {, result of operation save in F; } \\ & F \rightarrow 0 \times 12=0 \\ & W+F=00100010 \\ & \quad \underline{00000000} \\ & 00100010 \\ & F \rightarrow 0 \times 12=0 \times 22 \end{aligned}$ |
| ADDWF | 0x12, F | $\begin{aligned} & \mathrm{W}+\mathrm{F} \text {, result of operation save in F; } \\ & \mathrm{F} \rightarrow 0 \times 12=0 \times 22 \\ & \mathrm{~W}+\mathrm{F}=00100010 \\ & \quad \underline{00100010} \\ & 01000100 \\ & \mathrm{~F} \rightarrow 0 \times 12=0 \times 44 \\ & \hline \end{aligned}$ |
| ADDWF | 0x12, F | $\begin{aligned} & \mathrm{W}+\mathrm{F} \text {, result of operation save in F; } \\ & \mathrm{F} \rightarrow 0 \times 12=0 \times 44 \\ & \mathrm{~W}+\mathrm{F}=00100010 \\ & \quad \underline{01000100} \\ & 01100110 \\ & \mathrm{~F} \rightarrow 0 \times 12=0 \times 66 \end{aligned}$ |
| ADDWF | 0x12, F | $\begin{aligned} & \mathrm{W}+\mathrm{F} \text {, result of operation save in F; } \\ & \mathrm{F} \rightarrow 0 \times 12=0 \times 66 \\ & \mathrm{~W}+\mathrm{F}=00100010 \\ & \quad \frac{01100110}{10001000} \\ & \mathrm{~F} \rightarrow 0 \times 12=0 \times 88 \\ & \mathrm{~W}=0 \times 22 \end{aligned}$ |

4. State the contents of RAM locations $0 \times 12$ and WREG after the following program:

| MOVLW 0 | $\mathrm{L}=0$ <br> $\mathrm{~W}=\mathrm{L}=0$ |  |
| :--- | :--- | :--- |
| MOVWF $\quad 0 \times 12$ | $\mathrm{~F} \rightarrow 0 \times 12$ |  |
|  |  | $\mathrm{~F}=\mathrm{W}=0$ |
| $0 \times 12=0$ |  |  |


|  |  | $\mathrm{W}=0 \times 22$ |
| :---: | :---: | :---: |
| ADDWF | 0x12, W | $\begin{aligned} & \text { W + F, result of operation save in W; } \\ & F \rightarrow 0 \times 12=0 \\ & W+F=00100010 \\ & \quad \underline{00000000} \\ & \text { W }=00100010 \end{aligned}$ |
| ADDWF | 0x12, W | $\begin{aligned} & \mathrm{W}+\mathrm{F} \text {, result of operation save in } \mathrm{W} \text {; } \\ & \mathrm{F} \rightarrow 0 \times 12=0 \\ & \mathrm{~W}+\mathrm{F}=00100010 \\ & \quad \underline{00000000} \\ & \mathrm{~W}=00100010 \\ & \hline \end{aligned}$ |
| ADDWF | 0x12, W | $\begin{aligned} & \mathrm{W}+\mathrm{F} \text {, result of operation save in } \mathrm{W} \text {; } \\ & \mathrm{F} \rightarrow 0 \times 12=0 \\ & \mathrm{~W}+\mathrm{F}=00100010 \\ & \quad \underline{00000000} \\ & 00100010 \\ & \mathrm{~W}=0 \times 22 \\ & \mathrm{~F} \rightarrow 0 \times 12=0 \\ & \hline \end{aligned}$ |

5. Write a program to get data from the SFRs of Port B and send it to the SFRs of PORT C continuously.

| Again | MOVF | PORTB,W | F $\rightarrow$ PORTB <br> $\mathrm{W}=\mathrm{F}=$ PORTB |
| :--- | :--- | :--- | :--- |
| MOVWF | PORTC | $\mathrm{F} \rightarrow$ PORTC <br> PORTC $=\mathrm{W}=$ PORTB |  |
|  | GOTO $\quad$ Again | Goto label 'Again' to repeat the process again |  |

6. Write a program to get data from the SFRs of Port B. Add the value 5 to it and sent it to the SFRs of Port C

| Again | MOVF | PORTB,W |
| :--- | :--- | :--- |
| ADDLW | D'5' | $\mathrm{F} \rightarrow$ PORTB <br> $\mathrm{W}=\mathrm{F}=$ PORTB |
| MOVWF | PORTC | $\mathrm{L}=5$ <br> $\mathrm{~W}+\mathrm{L}=$ PORTB +5 |
| GOTO $\quad$ Again | $\mathrm{F} \rightarrow$ PORTC <br> PORTC $=\mathrm{W}=$ PORTB +5 |  |

